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Oxygenation During Venoarterial 
Extracorporeal Membrane Oxygenation: 
Physiology, Current Evidence, and a Pragmatic 
Approach to Oxygen Titration
OBJECTIVES: This review aims to: 1) identify the key circuit and patient fac-
tors affecting systemic oxygenation, 2) summarize the literature reporting the as-
sociation between hyperoxia and patient outcomes, and 3) provide a pragmatic 
approach to oxygen titration, in patients undergoing peripheral venoarterial extra-
corporeal membrane oxygenation (ECMO).

DATA SOURCES: Searches were performed using PubMed, SCOPUS, Medline, 
and Google Scholar.

STUDY SELECTION: All observational and interventional studies investigating 
the association between hyperoxia, and clinical outcomes were included, as well 
as guidelines from the Extracorporeal Life Support Organization.

DATA EXTRACTION: Data from relevant literature was extracted, summarized, 
and integrated into a concise narrative review. For ease of reference a summary of 
relevant studies was also produced.

DATA SYNTHESIS: The extracorporeal circuit and the native cardiorespiratory 
circuit both contribute to systemic oxygenation during venoarterial ECMO. The 
ECMO circuit’s contribution to systemic oxygenation is, in practice, largely de-
termined by the ECMO blood flow, whereas the native component of systemic 
oxygenation derives from native cardiac output and residual respiratory function. 
Interactions between ECMO outflow and native cardiac output (as in differential 
hypoxia), the presence of respiratory support, and physiologic parameters affect-
ing blood oxygen carriage also modulate overall oxygen exposure during veno-
arterial ECMO. Physiologically those requiring venoarterial ECMO are prone to 
hyperoxia. Hyperoxia has a variety of definitions, most commonly Pao2 greater than 
150 mm Hg. Severe hypoxia (Pao2 > 300 mm Hg) is common, seen in 20%. Early 
severe hyperoxia, as well as cumulative hyperoxia exposure was associated with 
in-hospital mortality, even after adjustment for disease severity in both venoarterial 
ECMO and extracorporeal cardiopulmonary resuscitation. A pragmatic approach 
to oxygenation during peripheral venoarterial ECMO involves targeting a right ra-
dial oxygen saturation target of 94–98%, and in selected patients, titration of the 
fraction of oxygen in the mixture via the air-oxygen blender to target postoxygen-
ator Pao2 of 150–300 mm Hg.

CONCLUSIONS: Hyperoxia results from a range of ECMO circuit and patient-
related factors. It is common during peripheral venoarterial ECMO, and its 
presence is associated with poor outcome. A pragmatic approach that avoids 
hyperoxia, while also preventing hypoxia has been described for patients receiving 
peripheral venoarterial ECMO.

KEYWORDS: brain injury; cardiogenic shock; extracorporeal membrane 
oxygenation; hyperoxemia
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Venoarterial extracorporeal membrane oxy-
genation (ECMO) provides both temporary 
mechanical circulatory support and extra-

corporeal gas exchange via a membrane oxygenator. 
Venoarterial ECMO is used as a rescue therapy for 
patients with cardiogenic shock as a bridge to recovery 
or advanced therapy (1, 2). Venoarterial ECMO may 
also be used as a rescue therapy in selected patients 
with refractory cardiac arrest, termed extracorporeal 
cardiopulmonary resuscitation (ECPR) (3, 4).

Although venoarterial ECMO and ECPR are 
deployed to prevent organ ischemia, patients also fre-
quently experience arterial hyperoxia (above normal 
partial pressures of oxygen Pao2 > 100 mm Hg) (5–7). 
Exposure to supraphysiologic Pao2 can result in organ 
damage due to increased mitochondrial generation of 
reactive oxygen species. Early randomized controlled 
trials (RCTs) and meta-analyses of critically ill patients 
suggested that conservative oxygen targets (Pao2 
70–100 mm Hg, oxygen saturation [Spo2] 90–94%), 
compared with liberal targets (Pao2 up to 150 mm Hg, 
Spo2 97–100%), may reduce in-hospital mortality (8). 
Since then results have been discordant: other thresh-
olds for hyperoxia have been associated with harm (9), 
no difference (10) or even benefit in subgroups of crit-
ically ill patients, including those with cardiac arrest 
(11), acute respiratory distress syndrome (9, 12), sepsis 
(13, 14), and trauma and brain injury (11, 15–17).

However, such thresholds provide little guidance for 
the titration of oxygen in venoarterial ECMO or ECPR 
patients. First, patients requiring venoarterial ECMO or 
ECPR may be especially vulnerable to the effects of hyper-
oxia due to severe ischemia-reperfusion injury (18, 19). 
Second, the previous RCTs conducted in ICU patients do 
not reflect the magnitude of oxygen exposure experienced 
by venoarterial ECMO/ECPR patients (9). Third, systemic 
oxygenation during ECMO is achieved via the titration of 
circuit parameters in addition to ventilatory parameters 
(Fio2). Thus, it may not be appropriate to apply the find-
ings of RCTs in the general ICU population to ECMO 
patients.

Currently, observational studies provide the best ev-
idence base to evaluate effect of hyperoxia on patient 
outcomes. Definitions of hyperoxia (Pao2 > 400, > 300, 
> 200, > 150) and normoxia (Pao2 < 300, < 200, < 150, 
and 60–100 mm Hg) have varied. These definitions were 
initially derived from cardiac arrest (11, 20) and cardio-
pulmonary bypass literature (21), which, in turn, relied on 
expert consensus and animal studies (22, 23). Normoxia 

was generally defined by practice at the time. Interpretation 
of findings in these studies is hampered by differences in 
the frequency and timing of arterial blood gas (ABG) 
sampling (first 24 hr, mean Pao2 over ICU course, max-
imum Pao2). Regardless, hyperoxia remains prevalent and 
the association between Pao2 greater than 300 mm Hg and 
mortality (5, 24–26) is relatively consistent.

The extent to which this association is driven by con-
sequences of direct hyperoxic injury rather than disease 
severity is heavily debated (26–28). Mechanistically, 
hyperoxia during venoarterial ECMO/ECPR may poten-
tiate mortality and poor neurologic outcome by: 1) exac-
erbating reperfusion injury and neurometabolic failure (3, 
29, 30), 2) worsening pulmonary injury via pulmonary 
neutrophil sequestration (31–33), and 3) propagating sys-
temic inflammation in patients with underlying sepsis or 
acute respiratory distress syndrome (19, 33–36). Equally, 
hyperoxia may simply indicate low cardiac output states 
in which the patient is dependent on high ECMO blood 
flows (27). ABG samples in these patients necessarily ex-
press Pao2 values well above normal.

Current Extracorporeal Life Support Organization 
(ELSO) guidelines caution against excessively high 
Pao2 levels, recommending “slight hyperoxemia after 
the oxygenator (150 mm Hg)” (1). However, achieving 
this is complicated by the numerous circuit parameters 
and patient factors that influence oxygenation during 
venoarterial ECMO (37).

This review aims to: 1) examine the circuit and patient 
factors affecting oxygenation during peripheral venoar-
terial ECMO, 2) synthesize literature reporting the asso-
ciation between hyperoxia and patient outcomes, and 3) 
describe a pragmatic approach for oxygen titration during 
peripheral venoarterial ECMO support.

THE DETERMINANTS OF 
OXYGENATION AND CIRCUIT 
PHYSIOLOGY

Circuit Factors

Peripheral venoarterial ECMO (wherein ECMO blood 
is returned peripherally into the femoral artery; Fig. 1) 
is the most commonly deployed circuit configuration 
(1) and thus forms the primary subject of this review. 
In this configuration, venous blood is drained from 
the inferior vena cava and right atrium via large access 
cannula. Blood is then circulated through a centrifugal 
pump and passed through a membrane oxygenator 
(Fig.  1). In the membrane oxygenator, an air-oxygen 
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mixture flows through an array of hollow microporous 
tubes (38); the fraction of oxygen in the mixture is de-
termined by the gas blender (Fbo2). Simultaneously, 
blood flows around these tubular fibers. Oxygen dif-
fuses into the venous blood across the walls of the 
tube (the opposite is true for Co2; Fig. 1). Using this 
arrangement membrane oxygenators raise arterial ox-
ygen saturation (Sao2) from 50% to 80–100% (38, 39). 
The oxygenated blood is then returned into the ilio-
femoral junction or distal aorta via return cannula 

(Fig. 1). In this way, blood bypasses the native pulmo-
nary circulation and perfuses the arterial tree directly 
via retrograde ECMO blood flow.

Systemic oxygenation, as supplied by ECMO (ox-
ygen delivery [Do2], mL/min), can be expressed as the 
product of ECMO blood flow (L/min) and arterial ox-
ygen content (Cao2, ml/L) (40):

DO2

Å
mL
min

ã
= ECMO flow

Å
L

min

ã
× CaO2

Å
mL
L

ã
 [1]

        CaO2 = 1.34× (Hb)× SaO2 + (0.003× PaO2) [2]
Likewise, native circu-

lation also contributes to 
systemic oxygenation, and 
this is also governed by the 
same variables in Equations 
1 and 2. Therefore, net sys-
temic oxygenation during 
venoarterial ECMO can 
be thought of as the com-
bined contributions of 
the ECMO circuit and the 
native cardiopulmonary 
circuit.

Per Equation 2, the ox-
ygen content of blood 
(Cao2) is modulated by sev-
eral factors; concentration 
of hemoglobin, the degree 
to which this hemoglobin 
is saturated (Sao2), and 
the amount of oxygen dis-
solved in the blood (Pao2). 
Raising the hemoglobin 
content of blood via trans-
fusion may be considered 
in hypoxic patients with 
anemia. However, transfu-
sion also increases blood 
viscosity, which may impair 
flow through the ECMO 
circuit and also increases 
the risk of transfusion-
related complications, such 
as infection, transfusion- 
related acute lung  
injury, and transfusion- 
associated circulatory 
overload (41, 42). ELSO 

Figure 1. Peripheral venoarterial extracorporeal membrane oxygenation cannulation configuration. 
LMP = liters/min, O2 = oxygen, PEEP = positive end-expiratory pressure, RMP = revolutions/min, 
Spo2 = oxygen saturation.
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recommends maintaining a hematocrit of greater than 
40% (to achieve arterial saturations above 95% with 
“low” Fio2); hemoglobin is amply saturated (Sao2 > 
95%) at Pao2 levels greater than 80–100 mm Hg (1, 
43). The results from several RCTs investigating the 
optimal hemoglobin transfusion threshold are awaited 
(44, 45).

Increasing the Fbo2 increases the oxygen gradient 
across the membrane, promoting the movement of ox-
ygen into the blood (Fig. 1) (46). This manifests sup-
raphysiologic postoxygenator Pao2 levels far in excess 
of 500 mm Hg (38). Fbo2 is a key determinant of Pao2. 
Pao2 itself has a proportionally small effect on Cao2 
(Equation 2). It follows that high postoxygenator Pao2 
values only have a marginal impact on ECMO Do2, as 
per Equation 2.

Therefore, the primary determinant of Do2 (via 
ECMO circuit) is the ECMO blood flow rate (27, 38, 39, 
47, 48). When ECMO blood flow (L/min) is increased, 
Do2 increases proportionately (Equation 1). However, 
above a blood flow threshold, transit time through the 
oxygenator may be so reduced that RBCs are not fully 
oxygenated. Consequently, outlet saturation falls from 
100%. This is the “rated flow”: the flow rate beyond 
which venous blood (Sao2 75%, hemoglobin 12 mg%) 
fails to attain 95% saturation at the outlet. The rated 
flow is specific to the membrane lung used and is not 
exceeded in practice (38, 49–51).

Patient Factors

Systemic oxygenation is also influenced by patient fac-
tors, including native respiratory function and cardiac 
output, which can vary throughout the ECMO run and 
disease course. The contribution of respiratory func-
tion to systemic oxygenation is augmented by venti-
latory parameters; Fio2 and positive end-expiratory 
pressure (PEEP) (38, 39). Organ specific perfusion and 
oxygenation is additionally modified by the interac-
tion between anterograde native cardiac output and 
retrograde ECMO blood flow in the aorta (1, 37).

Respiratory Failure. Respiratory failure in patients 
with cardiogenic shock requiring venoarterial ECMO 
is common and has numerous etiologies. Etiologies 
of pulmonary complications in patients with cardio-
genic shock frequently include ischemia-reperfusion 
injury; lung contusion arising from chest compres-
sions (52); and, aspiration of gastric contents leading 

to pneumonitis and pneumonia (53). It may also result 
from venoarterial ECMO support itself. Left ventric-
ular (LV) distension (54) results from the imbalance 
between a relatively overactive right ventricle and 
a poor (or nonejecting) left ventricle (which may be 
exacerbated by the increased afterload on the left ven-
tricle create by the retrograde venoarterial ECMO 
blood flow). Stasis of blood in the pulmonary circula-
tion can result in severe pulmonary edema and thus, 
respiratory impairment.

Management of patients with cardiorespiratory failure 
generally involves: 1) treatment of the primary pulmonary 
pathology where possible; 2) lung-protective ventilation  
to limit ventilator-induced lung injury, tidal volume 
4–6 mL/Kg, and careful PEEP titration (to prevent atelec-
tasis and maintain lung recruitment) and low Fio2 (titrated 
to appropriate Spo2); and 3) consideration of adjunctive 
therapies such as LV venting.

Interactions Between ECMO and the Failing Heart. 
The failing heart and hyperoxia. Competition between 
ECMO blood flow and native cardiac output also mod-
ulates systemic Do2. In early and/or severe cardiogenic 
shock, native cardiac output is typically low and oc-
casionally absent. Systemic perfusion is sustained pre-
dominantly by retrograde aortic ECMO blood flow 
and systemic oxygenation comes almost entirely from 
the membrane oxygenator. In this scenario, perfusion 
of the cerebral circulation may be entirely by hyper-
oxic retrograde venoarterial ECMO blood flow, expos-
ing the brain to harmful Pao2 levels (up to 500 mm 
Hg) (55–57). Additionally, lack of LV ejection (and 
thus aortic valve opening) in those with severe cardio-
genic shock may predispose to intracardiac or aortic 
root thrombosis and other associated thromboembolic 
complications (4, 57, 58).

Clinical observations support the above physiologic 
understanding that peripheral venoarterial ECMO 
increases oxygen exposure, especially in the setting 
of severe circulatory failure. A retrospective study 
of cardiac arrest patients (n = 169) requiring either 
ECPR or conventional cardiopulmonary resuscitation 
(CCPR) showed higher mean Pao2 levels (211 ± 58.4 
vs. 119 ± 18.1 mm Hg; p < 0.0001) and higher pro-
portion of hyperoxic episodes (> 300 mm Hg; 74.7% 
vs. 16.7 mm Hg; p < 0.001) in the ECPR (vs. CCPR) 
group. The INCEPTION trial randomized patients 
with refractory out-of-hospital cardiac arrest (OHCA) 
and an initial ventricular arrhythmia to either ECPR 
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or CCPR. Despite similar baseline characteristics, se-
verity of OHCA and circulatory failure, in-hospital 
median Pao2 was significantly greater in the ECPR 
group (60 mm Hg; interquartile range [IQR], 22–135 
vs. 45 mm Hg; IQR, 22–67 mm Hg; p < 0.001 [4, 59]). 
Furthermore, in ECPR patients, higher mean 24 hours 
Pao2 was correlated with lower mean blood pressure 
recordings (during first 24 hr of ECPR) (25).

Differential hypoxia. Upon partial recovery of car-
diac function, native (anterograde) cardiac ejection 
competes with retrograde aortic ECMO blood flow 
(57). The mixing zone may subsequently move distally 
in the aorta (Fig. 2). If there is concomitant respira-
tory failure or a failure to increase the minute ventila-
tion by clinicians this can result in poorly oxygenated 
blood from the native circulation being delivered to 
the upper body (including the coronary and carotid 
circulations) while highly oxygenated blood from the 
ECMO circuit perfuses the lower body. This is termed 
differential hypoxia (60). A variety of strategies can be 
used to manage this, including treatment of under-
lying lung pathology, increasing ventilatory support 
(Fio2, PEEP), reducing native cardiac output by re-
ducing inotrope doses, removing venoarterial ECMO, 
or moving to alternative cannulation configurations, 
such as veno-venoarterial ECMO (61–63).

HYPEROXIA AND PATIENT OUTCOMES

Venoarterial Extracorporeal Membrane 
Oxygenation

Hyperoxia occurs in a substantial proportion of veno-
arterial ECMO patients: 30.2% and 19.8% of patients 
included in the ELSO registry (2010–2020) experi-
enced mild hyperoxia (151–300 mm Hg) and severe 
hyperoxia (> 300 mm Hg), respectively, within the 
first 24 hours of ECMO cannulation (64). This is cor-
roborated by recent observational studies using sim-
ilar definitions (26, 64–67). Longitudinal data provides 
added insight: 1) cannulation configuration (central, 
peripheral, femoro-axillary) appears not to drastically 
affect early hyperoxia exposure (26, 64); 2) single Pao2 
obtained via ABG within 24 hours of cannulation does 
not appropriately categorize early and long-term ox-
ygen exposure (6, 7, 26); and 3) prevalence of hyper-
oxia has generally decreased with time (64).

The association between hyperoxia and mortality 
is most consistent among patients exposed to severe 

hyperoxia (Fig. 3). An analysis of 4 hourly blood 
gases taken within 24 hours of venoarterial ECMO 
initiation (n = 132; where venoarterial ECMO was 
initiated for postcardiotomy shock [38.6%], cardio-
genic shock [25.8%], and ECPR [31.8%]) found that 
duration (hr) of severe (> 300 mm Hg) and moderate 
hyperoxia (> 200 mm Hg) was significantly associ-
ated with mortality. This was despite adjustment for 
illness severity (Sequential Organ Failure Assessment 
score, venoarterial ECMO indication) and complica-
tions (brain injury during ECMO) (65). Alternative 
definitions of early Pao2 (first Pao2, mean 24 hr Pao2, 
maximum Pao2) showed no or weak association 
with ICU mortality (65). Moussa et al (26) collected 
Pao2 up to 48 hours postadmission and used the air-
oxygen blender as the primary controller of Pao2. 
In a propensity weighted analysis of 143 venoarte-
rial ECMO patients (considering variables related to 
28-d mortality for patients who did/did not expe-
rience Pao2 > 150 mm Hg), both peak and overall 
mean Pao2 were significantly associated with 28-day 
mortality (adjusted odds ratio [aOR], 2.65; 95% CI, 
1.79–6.07 and aOR, 2.85; 95% CI, 1.12–7.37; respec-
tively, per 10 mm Hg) (26). Survival analysis showed 
that mild hyperoxia (200–300 mm Hg) was associ-
ated with greater 28-day survival compared with 
moderate (< 200 mm Hg) and severe hyperoxia (> 
300 mm Hg; p = 0.005) (26). Analyses of the ELSO 
registry (64) and external single centers (67) dem-
onstrated that patients who experienced early se-
vere (> 300 mm Hg; hazard ratio [HR], 1.78; 95% 
CI, 1.63–1.94) or mild (151–300 mm Hg; HR, 1.32; 
95% CI, 1.22–1.42) hyperoxia had greater overall 
risk of death compared with normoxic patients (60–
150 mm Hg). This was despite adjustment for ECMO 
circuit flow and Fio2 among other variables indica-
tive of illness severity (64).

Neurologic outcome is seldom investigated. Thus, 
far poor functional outcome (Modified Rankin Scale 
4–6) has been weakly associated with mean 24 hours 
Pao2 (aOR, 1.01; 95% CI, 1.01–1.02) (65).

Extracorporeal Cardiopulmonary Resuscitation

Analysis of ECPR patients in the ELSO registry showed 
that moderate (200–299 mm Hg; aOR, 1.42; 95% CI, 
1.02–1.97) and severe hyperoxia (> 300 mm Hg; aOR, 
1.59; 95% CI, 1.20–2.10) were associated with acute 
brain injury and in-hospital mortality (56). These 
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findings are consistent among observational studies 
and persist regardless of disease severity and ventilatory 
parameters (5, 24, 25, 56, 68, 69) (Fig. 3). Bonnemain 
et al (25) found mean Pao2 (n = 44, first 24 hr) was as-
sociated with increased mortality independent of arte-
rial line position. This suggests the association between 

hyperoxia and mortality in 
ECPR patients cannot be 
explained by differences 
in native cardiac function 
alone (25): nonsurvivors 
had significantly higher 
mean 24 hours Pao2 than 
survivors (306 ± 121 vs. 
164 ± 53 mm Hg; p < 0.001) 
but similar pulse pressure 
(within the first 24 hr).

Severe hyperoxia 
during ECPR (Pao2 > 
400 mm Hg) substan-
tially decreased likeli-
hood of discharge with 
good neurologic outcome 
(Cerebral Performance 
Category [CPC] score ≤ 
2 at 30 d; aOR, 0.48; 95% 
CI, 0.29–0.82); adjust-
ment was carried out for 
propensity score (which 
comprised patient dem-
ographics, nature of car-
diac arrest, prehospital 
interventions, time to 
ECMO initiation), Paco2, 
and lactate (70). Further 
observational studies 
have consistently demon-
strated that hyperoxia, at 
various thresholds (> 160, 
> 200, > 300 mm Hg), 
significantly decreases 
likelihood of good neu-
rologic outcome (CPC 
score) (65, 68–71). It is 
useful to note that anal-
ysis of a mixed cohort of 
venoarterial ECMO and 
ECPR patients (n = 42, 

31.8%) did not reproduce the same level of asso-
ciation as above when using functional outcome 
(modified Rankin score 4–6, at discharge) as the in-
dicator neurologic recovery (odds ratio, 1.01; 95% 
CI, 1.01–1.02; p = 0.001; per mm Hg of mean 24 hr 
Pao2) (65).

Figure 2. Differential hypoxia. ECMO = extracorporeal membrane oxygenation, LMP = liters/min, 
RMP = revolutions/min.
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However, in all of the above studies, native cardiac 
output has not been directly measured. Therefore, 
whether or not hyperoxia causes direct damage or is 
a marker of poor native cardiac output remains to be 
determined. Prospectively designed RCTs are eagerly 
awaited to resolve such questions (NCT03841084).

A SUGGESTED APPROACH

The determinants of oxygenation during venoarterial 
ECMO are complex, largely due to the interaction be-
tween the circuit physiology and dynamic patient fac-
tors described above (48, 60). As such, the assessment 
and interpretation of oxygen exposure is challenging 
given that it may vary across body regions, and var-
ies with different phases of the patients’ illness (25). 
Although hyperoxia during venoarterial ECMO or 

ECPR is common and has been consistently associ-
ated with poor outcome and survival (26), the ideal 
targets for oxygenation during venoarterial ECMO are 
not known (1, 72). Above, we identified ECMO circuit 
parameters as a key determinant of patient oxygena-
tion, and the control of Fbo2 is a clinically appealing 
(73) method to modulate oxygenation. The advan-
tages and disadvantages of this approach are discussed 
below and summarized in Table 1.

Blending

Titration of Fbo2 is readily achieved through the addi-
tion of an oxygen air blender to the sweep gas flow 
meter (Fig. 4). This system typically requires both 
an oxygen and air outlet, which may not be avail-
able during interhospital or intrahospital transport. 

Figure 3. Summary of reported effect sizes among key studies in venoarterial (VA) extracorporeal membrane oxygenation (ECMO) and 
extracorporeal cardiopulmonary resuscitation (ECPR) patients investigating hyperoxia and mortality. Where odds ratio (OR), compares 
odds of mortality (in-hospital, 28- or 30-d) in the comparator vs. reference group. Therefore, OR greater than 1 indicates patients in the 
comparator group had higher risk of death than those in the reference group.
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While Fbo2 can be manipulated using the blender, this 
strategy introduces the risk of causing hypoxemia if 
introduced without adequate monitoring of postoxy-
genator oxygen levels. Oxygenator function declines 
over time and as such postoxygenator outlet Pao2 can-
not be assumed to be stable over long periods.

Continuous oxygen titration is an important consid-
eration due to the dynamic nature of patient and cir-
cuit oxygenation, and for the need to intervene quickly 
when hypoxia occurs. However, the measurement of 
postoxygenator saturations is not routinely performed 
by many commercially available circuits. Thus, moni-
toring is often best achieved by direct blood sampling 
from the postoxygenator port (Fig. 4). While not tech-
nically demanding this adds to nursing workload and 
repeatedly accessing the circuit may increase the risk 
of infection (74) (Table 1). An alternative strategy is to 
measure Spo2 in two body locations.

Targets

Current ELSO interim guidelines recommend “slight 
hyperoxemia after the oxygenator (150 mm Hg)” (1), 
while also cautioning against hyperoxia (although 
there is no specified upper target). The goal is to strike 
a balance between the risks of hyperoxia on the one 
hand, and a buffer against the potential for hypoxia on 
the other.

Although unvalidated by RCTs, the Pao2 target of 
150 mm Hg appears to fall within the hypothetical 
safety zone (5, 24, 25, 56, 65, 70, 72). As previously 
noted, studies that describe associations between 
hyperoxia and outcome differ in methodology and 
may unknowingly attribute mortality to hyperoxia 
rather than more severe disease (27, 37). Still, taken 
together the evidence suggests that targeting a Pao2 of 
less than 300 mm Hg avoids sequelae of hyperoxia.

During venoarterial ECMO, lower targets (< 
150 mm Hg) may increase risks of hypoxemia: subclin-
ical membrane dysfunction, clot formation, changes in 
native cardiopulmonary function or ventilation may 
all contribute to this risk. Continuous and accurate 
monitoring of postoxygenator arterial saturations and 
tensions is therefore vital (Fig. 4).

RCTs in OHCA patients not requiring ECMO sup-
port may lend some insight into management of ECPR 
patients: the EXACT trial concluded that among patients 
achieving return of spontaneous circulation after OHCA, 
targeting an oxygen saturation of 90–94%, compared with 
98–100% offered no benefit (pre-ICU admission) (75). 
In ECPR patients who are hemodynamically stable with 
no respiratory failure or complications, risk of hypoxia is 
low and targeting Spo2/Sao2 between 92% and 98% may 
be beneficial, as per cardiac arrest guidelines (76–79). In 
such patients, blending may be considered by experienced 
centers to achieve optimal oxygenation.

The effect of a routine conservative oxygen target 
(targeting right radial and postoxygenator satura-
tions of 92–96%) vs. a liberal oxygen target (right 
radial artery and postoxygenator saturations target 
of 97–100%) is currently being investigated in the 
300 patients, multicenter Blend to Limit Oxygen in 
ECMO: A RanDomised ControllEd Registry trial 
(NCT03841084). This study will enroll both venoarte-
rial ECMO and ECPR patients who are normoxic at 
baseline—patients that have concomitant hypoxic res-
piratory failure will be excluded as they require careful, 
individualized titration of ventilatory parameters (80). 
In the interim, an approach that avoids hypoxia while 
preventing severe hyperoxia seems prudent and has 
been outlined in Figure 4.

CONCLUSIONS

The determinants of oxygenation during venoarte-
rial ECMO are complex and involve both ECMO and 

TABLE 1.
Advantages and Disadvantages of 
Reducing Oxygen Targets in Venoarterial 
Extracorporeal Membrane Oxygenation 
and Extracorporeal Cardiopulmonary 
Resuscitation Patients

Advantages Disadvantages 

Limits exposure to 
high oxygen levels

May be associated with hypoxic 
episodes

Possible less oxygen 
injury/ischemic re-
perfusion injury

Blending requires the addition of 
an air tank which can compli-
cate transportation

Easily achieved with 
air oxygen blender

Need to monitor postoxygenator 
blood gases

 Additional staff training

 Will have less influence on the 
oxygenation of blood from 
native circulation
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patient related factors. There is a growing body of obser-
vational data that suggest hyperoxia is associated with 
harm, however, reducing oxygenation targets may also 
increase the risk of hypoxia. An approach that balances 
these risks is outlined in this article. We await further 
evidence to identify an optimal strategy.
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